
7 AD-AC98 069 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/G 9/2
I ASSERTION MECHANISMS IN PROGRAMMING LANGUAGES.IU)
INOV 79 M V ZELKOWITZ, J R LYLE F'49620-80-C-O001l

UNCLA7SIFIED AFOSR-TR-81-0365 N

AFOSR.T. 81 -036 8)

COMPUTER SCIENCE'

TECHNICAL REPORT SERJES

DTIC@ S ELECT ft
APR 2 3 1981

F

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

S20742

Approved for nt ic reo l.,81 4d ti ° unl 'e ;

T Q-335 November 1979

Assertion lechanisms

in
Programming Languages

James R, Lyle
Marvin V. Zelkowitz

Department of Computer Science
University of Maryland

College Park, Marytand 20742

-. * s..~"~. }'....j...2 (7b).

TochAi - h, o ' tlvnOf f icoa"

The .ork reported here was supported by a rant from the
Air Force Office of Scientific Research
Computer time was provided in part by the Computer Sciencei~p~v'/- , ' -e. '

A: I I)

WORTTDOCUENTATION PAGElI'f i

- ;9 V I A C I I'f'4 t.()1 0

AI7OS ATR 8 1 -o 1
A ,T ITI r, (-~1 SubjuLI.) ' iLWf A

' SFRTi ON MF I IAN[SIMS I N P(;AI (*

2,AU T QOW y '' A' .dk& b

.0 Wrvi n V./ZelIkOkwi tZ ri Ji1Mes- R. '1'y I ! L

9 PFRrORKIN0. 0777pZ ANI' T!'N NAME AN," AOOFS

Departmicn ot Ccinpitol Scje[A.-
Univorsitv ()I Marviand(

coil eve Par1k MD 20742 ___ ______1CONTROLLING) FP-E NAMF AND AC)NFL'S 1 A L

tdr Force 01ii ce of Scientific, R(,sc'ardi/,7 /. ' .'; 1w
BollI i II, AFB DX 20332

%S L)IST fNj rj r TAT FM-EA4 T ff~ hi

Appovdfor public, rIC as di s Lr i ii i inni 1

1 I~PF tT~ 7 L1 9L of fh, [1 P,.!' ff 'fl

Mt'~' .PlN AR, 141HT

*1- lvr{ v''l'' v ,,I ,r,.- r ''.

of a ;1!Sr SVi~flt f I I~ a~- HPi'XfI' iOO lC iiiv KV I
We take I hi -,view I. i m) ('xcp lj i 01 i. "ItUch .111 I .1 if1 1 .1 i ll-, Il.-
imapi emcwtat i on of il iow,- i n ;I P1 / I~~f irenp I f, (il

1
f-

interfnce with thce except ion nichimni! rA I I/lI (IN-uni

Principle usagcs includce: test data se- cvai nat ion arlyi c:n~'i,
dr',mri n of absrcr: dlait typec sprci [ic-it io;.

DD 14 73

.k A-

Assertion Iecnanismn in Progra-nming Lanyuages

ABSTRAT--

Assertions typically are used to verif y program behavior.

However, the use of an assertion to cause a run-time exception can

have practical benifits. We take this view that an exception is

such an assertion faiLure.

The implementation of assertions in a PL/I compiler is

described, and the interface with the exception mechanism of PL/I

(ON-units) is described. Principle usages include: test data set

evaluation and extension of the domain of abstract data type

specifications.

Accession For

NTIS GRA&I

Unannounced

';.:t:i bu t I on!

Av3ilability Codes

-Avail nnior
list I Spucijal

" .. e zf C .ntents

1 1 ntroduction * * * * * • * ° * * * 1

2. Survey of Existing Languages 3

2.1. Exceptions • •

2.1tc~ifs . . .L I ****3

2.1.2o Ada * • . e • . * * * * ° * . 4

2.1.!. Gypsy 4 .**

2.1 .4. PascaL,EucLid anu ZENO 4

2.2. Assertions . 5

2.2 .1 PascaL .

2 22 ADA 6

2. .3. EucLiJ * • o • • . . . • 6

2.2.4. ZENO . 7

2 .2*5. GYPSY

2 .2 . b PL/C S

3. Assertions in PLACES 10

F IGRE 3-1 PLACES Structure 11

3.1. jasic ASSERT statement • • • . • . 12

3.2. invariant assertions 13

3.3. jamed Assertions . • . . . • • • • . . . • 13

3.4. ONASSERT buiLtin f unction 14

3.5. Execution Summary 15

.5. An ExampLe . • . . • . • • . • • . 15

Figure Z-' PLACES Program dith Assertions 15

F igure C utput f rom P rogram %UL . • 17

1.7. Lnnancements Una:er stjaly •• • • • •1 7

j Le f Ccntents

4. Using Assertions in Projravs • , , . . . , . , 19

4.1. Provide Information to a Compiler . . . , , 19

4.2. Program Testing . . .* a 19

4.2.1. Pre and Post Conditions 20

4.2.2. Invariant Assertions 20

4.2.3. Test Data Evaluation 20

Figure 4-1 Jsin 4 Assertiois in Path Testing . • 21

Figure 4-Z *Ionitoring Path Selection . . ° ° . 22

4.3. Exceptions Viewea as Assertions . . . ° • • • 22

4.4. Data Typr Specifications • 23

5, References . 26

Ii

-.scrti n tcr nis s in -ro ,anin,) Langiiages

Assertions, relatively new program constructs developed as

part of research in program verification, typically are used to

verify orojram behavior. They allow a programmer to make

statements ab%)ut what ought to be true at a point in program

execut ion.

The languaje designer has several options when considering

the semantics of an assertion mechanism. Originally they were

considered predicates for a theorem prover to (necessarily)

verify, but had no impact upon the computation process. This is

compatible with the Moare axiomatic approach towards program

verification [Hoare]. Alternative views are that they indicate

conditions to be tested during program execution or they could

indicate a lemma (e.g. theorem, axiom, pre or post condition) to

be oroven ty the compiler. The failure of a run-time check causes

execution to stop, and may raise an exception condition.

The basic assumption in this current research is that

assertions are another form of program exception, rather than

simaly a "oug". Many current languages include some form of

excection hanalin, (e.g. O'-units of PL/I). Or stated another

way, exceptions are simply j 13ncuage defined assertion (e.g. an

extension to the "lezality assertion" of Euclid).

.n the next section of this paper, several assertion and

excection mechanisms now under study are surveyed, while the

Z s r t i ,n o ic-n i s.S ir ro r-nmin3 Lan ,ja;e

University of "aryland PLACES system assertion mechanism is

explained in section 3. Section 4 d!csusses the goals and

aPPlications (e.g. test data evaluation and data type

specification) of the PLACES mechanism and gives examples of how

to nake use of the facilities witnin PLACES.

2.1. Lxceptions

This section summarizes briefly exception handling in

languages with assertion mechanisms.

.1.. PL/I

Exception handlers, called N-units, are associated

dynamically with exceptions. A program executes an ON statement

which oynamically associates a given block with a certain

exception. The block intercepts the exception as long as the

block executing the CN statement is active.

At compile time it is ieneratly impossible to identify which

handler (there can be as many as the programmer wishes to write)

is active at the time an exception Occurs. The environment of the

0:.-unit is nested within that of the signaling block. Facilites

in the fort of ouiltin function cdlls, are available to provide

more information about the exception (e.g. ONSOURCE). The ON-unit

retjrns to the point .here the exception was signaled unless the

Z--unit is terminate. by a vOTO.

2.1.2. Ac~d

The new Department of Defense language [Ada], contains an

exception mechanism. Each olock or program body may have an

exception hdnoler scatically attached as an exit to a block. when

an exception is raisea the current olock is terminated and control

passes to the appropriate hanaler. If no handler is specified the

exceotiun ii. prooagated outward to the invoking program unit

(caLling program or enclosing block). Unlike PL/I, control

retjrns to the point of call after the exception has been

orocessed.

2.1.3. GypSy

Exceptions, called condition clauses in Gypsy [Alen], are

similar to the Ada design, w ith condition clauses statically

attached to blocks. when a condition is raised, the olock is

tertinated and the condition is processed.

2.1.4. Pascal,Euclid and ZENO

'.o exce Ition handlin facilities are included in these

Languages, although so'e dialects have implemented some exception

ca~abiL iti.

2.2. Issertions

This section presents a brief description of the assertion

mechanism of several typical designs. The mechanisms range from

the eloborate interactive theorem prover of GYPSY to a simple

rjn-time check (to De) generated oy Ada compilers.

vost assertions are based upon axiomatic program verification

[oare]. if P anu Q are predicates and S is a statement, then

(D} S (Q)

states that if P is true (pre condition) and S is executed, then Q

is true (post condition). The axiom determines what pre and post

conjitions are allowed.

in programs, these are usually written:

ASSERT P;

S;

ASSERT 0;

Criginally a verifier, if given the above needs to prove (P) S {)

as a theorem. Such Proofs are difficult and often impossible.

Thus rjn-time checking was prooosed as an alternative in several

linguages. ,ote that this is essentially a test of an instance of

a variaoLe, while the more formal proof is a verificatian for all

possible Jata.

- .r v f x

2.2.1. Pascal

The original specification of Pascal does not include

assertions, however recent implementations Such as [Hansen] Texas

Instru-nents 99] minicomputer has extended Pascal to include them.

Aost Uf the recent languages (e.g. Euclid, GYPSY, Ada) are

derivaties of Pascal, and do contain some assertion Mechanism.

2.2.2. ADA

Ada includes an ASSERT statement, a boolean expression which

must ue true when the ASSEPT is encountered at run-time. If the

exoression is false an ASSERT-ERROR exception is raised.

2.2,3. Euclid

L.uclid is a systems programming language derived from Pascal

with reliability ano verifiaoility as the main design goals.

Assertions are included to provide useful documentation of program

specifications ano to assist in program verification [Popek]. If

an assertion cannot te proven at compile time a run-time check is

cLaced in the ouject code by the compiler. All Euclid programs

are exoectel tc ce verified, so the failure of a run-time check is

a fatal error that stops the program.

Tie Luclid compiler is exoected to pass Le~ajity assertions,

conjitions .hich must be true for a crolram to oe legal 'uclidv to

I

the verifier whenever the compiler cannot fully check that some

comstraint irposed O the language is satisfied. I.egality

assertions are source leveL assertions that can be inserted by the

programmer or automatically by the compiler that must be true

based jpon the source program. For example, for array references,

le:aLity assertions can be generated that the array ino ex is

wi thin tne array DOourls.

2.4 . ZE NO

Z c 14,J1 language strongily based on Euclic, is o-ing designeo

for research in coace optimization ano distributed computing

V aLL. The assertion mechanism in ZEN allows specifications

aLoUt what is true at a point in program execution (called 2o221

assertions) and acout what is invariant over 3 tlock of code

(called under assertions).

-oint assertions evaluate a boolean expression. If the

exrression is true execution continues, otherwise the program

stoos. The ccmpiler is expectea to try to infer the truth of the

expression from flo. analysis; a run-time check is generated if

the analysis cannot Drove tne result.

.noer assertions allow invariants to be placed on blocks of

code. A LlLcx laoeled with an unoer assertion will behave as if

there is a point assertion uefore each statement in tne tLock and

after the last state-ent of the block. Under assertions normally

a -uly to all inner rsLccKs but a relax clause can oe added to an

inner block to release the inner block from conforming to the

under assertion.

2.2,5. GYPSY

The s.rime design goal of GYPSY was an integrated

specification and programming language CAllen]. The assertion

mecnanis-n of GYPSY is used to express program soecifications.

%,ecifications can be placed on type parameters (REQUIRE),

statemients (ASSERT) and routines (ENTRY, BLOCK and ExIT). The

oro~ramer can request that the compiler prove or assume any

specification. The compiler can also be directed to include a

run-tine check of the specification. Failure of the run-time

check raises an exception.

2.2.-6. PL/CS

PL/CS is a version Qf PL/I developed at Cornell University

which "enfores some of the ioeas which have come to be regarded

as 22j iroqrarMini 2ritlice" [Conway]. The PL/CS assertion

,mecnanism includes in ASSERT uoolean expression with two

variations.

The F,% SOME variation attaches a DO group to the assertion.

The exoression must evaluate t: "true" for at least Dne value of

the index viriaule. For example, suppose we wish to assert that

sce leme nt of the srray X of dimension Na is greater than zero.

-ie .ouLj .rite:-

ASSERT (X(I) > J) FOR SOME I = I TO N;

The F i" ALL variation is similar, however, the bootean

excression must :e true for alt values of the index variabte.

The #'I./C.. assertion mechanism is intended to De used as a

test in aic; the assertions can oe turned off by compiler option

tor pr. 'jct ion runs.

IL1

3. Ast!2i~i in

The PLACES project (Pro ranming Language and Construct

Evaluation System) is a research project of the University of

warylana. By usin.g the PLUM toad and go PL/I compiler

[Zelkowitz a] as a basis, the compiler has been extended to

integrate assertions within the exception hanaling capability

i.e. 1% -units) of PL/I .

The ,oiel being implemented is a merger of verification and

testing strategies. Similar to Euclid, the programmer sprinkles

the code with assertions. A verifier tries to prove the

assertions. If so, then the assertion can effectively be Oeletea

CFigure 3-13. If not, then the assertion remains as a run-time

check. Differences from Euclid include, the failure of the

run-time check to invoke an exception handler, allowing the

programmer to take some action other than stopping the program.

FIGJRE 3-1 PLACS Structure

---------------- ----------- 4---- -

I I I I I
I IASSERT1 !NSI I CANNOT I GENERATE
I PLACES I--------- >1 V-RIFIE I --------)I RUN-TIE I

I IPROVE ! CHECK
I I I 1I
----------- - - ---- ---------------

CAN

I
0 ROVE -------------

II I
TRUE I DELETE I

--------------- >1 ASSERTION I
II I

I I
I4.------------4

II I
FALSE I PRINT I

............... >1 EPROR I
I "ESSAGE II I

4----------------

In vany appoications, oro rams cannot be oroven. For

exaupIe, given the sequence:

GET LIST (x);

the correctness of the program ma; depend upon the vaLue o# x

which cannot te kno.n untiL run-t ie. A perfect system (which we

- ..- r* .
P

oo not claim to ue producin,) would reduce atL assertions to the

following one:

GET LIST (X);

ASSERT (P(x));

onere P(x) is the or-oicate that "X has the properity that ensures

the correctness of the progr3m". Thus the correctness Of a

crojram run Jepenos or one specific run-time check. In the

exaipLe of Figure 3-21 the assertions at Lines 2 -23 and 29 can be

croven (see CuasiLg]) ano hence Jeleted. w hat remains is P(X)

where 9 is the vector tA,3] and P(X) is (A > d . G3 > C).

_.1. LasiC A%;ERT statement

The oasic AZSEFT in PLACES has the form:

A-,SERT (<booLean expression>);

.hict ;enerates a run-time test equivalent to:

IF NOT (<booLean expression>; THEN SIGNAL ASSERTFAIL;

In other iords, if the booLeai expression is "true" execution

ccnt inues, otherwise the ASSERTFAIL conoition is raised.

AS.;PTFAIL ,as a-cea as a new condition whiCh can be invoked. Thus

1he user can .rite:

0,. ASSERTFAIL cEGIN . . . END;

E v¢amces ct rLACES 6,.sertions:

iAEE T (A > Y);

" (A C u :. C)

" ,s~rt i '- 5 ir L',..J=

ASSERT (A); /a VALID CNLY IF A IS DECLARED BIT */

This is similar to other run-time assertion systems.

3.Z. :nvariant assertions

Cftpn it is uesirauLe to have an assertion hold over a olock

of code. PLACES hanules this via an invarianj asser i2C! of the

tori:

ASSERT (<boolean expression>) INVARIANT;

Si-i tar to ZEN , an invariant assertion generates a test of the

expression ,efore each statement at the same scope level in the

remainjer of the current uLock. The expression is also tested

after the last statement in the oLock. It should be noted that

white the invariant is checked oefore entry to and after exit from

a block nesteJ within the current scopet the invariant, unlike

ZEN,, is not checked within an inner block unless it is explicitly

s t 3t e J.

3.3. .a mea Assertions

PLACES assertions are non-executat. le statements in that they

cannot ue labeleo or referencei by a GrTO statement and have no

sice effects. mowever, it is sometimes desirable to refer to a

sL.ecific dssertian. To this ena assertions can be na-ed. The

syntax is as tot lcws:

"S rT (<n3mo>) (<boolean expression>) (IVA)IANT);

where the items in orackets ((name> and INVARIANT) are optional,

and <name> refers to any Legal PL/I identifier.

3.4. GNASSERT builtin function

Siven several assertions 4ithin a program, if a user writes

an ASSERTFAIL ON-unit, the dbility to determine which assertion

tailej is needed. In order to 0o this, the ONASSERT builtin

function was au ed. ONASSERT returns a character string which is

the name of the assertion which raised the exception. If the

failed assertion was not named the statement number of the

assertion is returned.

, se of named assertions and ONASSERT leads to a model of an

O%-jnit that has practicaL applications. For example, an

ASSERTFAIL ON-unit could have the structure:

ON ASSEqTFAIL 6EGIN;

DO CASL (SNASSERT);

\'LAbEL1 \ D0 ; . . . END;

\'LABEL2"\ Du; . . . END;

END; / ED CASE I

END; /* E'D ON-UNIT 'I

This has a sematic structure similar to:

3N A3SERTFAIL EEGIN;

,HE'. \LAEEL1 \ DO; . . . END;

H. L'. \LAt3 L7\ DO, •

tt

.5.. Lxecution Summary

.hen a PLACES program terminates a summary is printed giving

for eacrM assertion the number of executions and the number of

failures.

.. An Example

The program in Figure 3-2, auapted from [jasiiJi I ultipties

t.o numoerS by repeated audition. The ASSERT statements are

oresent at Lines 13, 22-23 ano 29. The assertion at lines 22-23

is in examle of an invariant. Tne expression is tested after

eacn stdtement in the renainder of the enclosing olock. That is,

the invariant is checked after each statement between Lines 23 and

2 .

:f any of the assertions fail the ON-unit in lines 8 to 1^ is

invokej. This U'4-unit prints a message identifing tle failed

aisertion and the statement where the failure occured. f the

assertions at lines I' or 29 fail ONASSEQT returns the statement

nu'oer of the AjSjRT, which is 12 or 22 respectively. However if

the ASSERT at Lines ZZ-2! fails, ONASSERT returns LOOP-INVARIANT

%ince t ne assertion is ndmej.

Fi, re 3-Z PLACFS Program with Assertions

PLUi 5:t A <Pkaces Oroject> 10/31/79 10:12:46

1 1 "UL:PROCEDURE OPTIDNS (MAIN);
2 ~ DCLARE (A 6,Y,Z);

:3 2

4 ' DECLARE ,ORE I1JPLJT BIT (1) INIT ('1-9);
5 3
6 4 ON ENDFILE (SYSIV4) MORE-INPUT = "0'3;
7 4
S- S ON ASSERTFAIL PUT SKIP EDIT

r a ASSERTION ",ONASSERT," FAILED AT:',ONSTMT)

12 6
13 PUT SKIP LIST ('ENTER A AND 8");
1 3 GET LIST (AB); 1
15 13 5, wHILE (MORE IN4PUT);
16 11 PUT SKIP DATA (A,8);
17 11 /*COMPUTE Z := A*B BY ADDITION 'I
13 12 ASSERT (A >= >= 0);
I19 13 z) O;
7 14 Y F3;
21 15 BEGIN;

22 15 ASSERT LDOPINVARIANT
z3 16 (Q = A*(d-Y) & Y >z 0) INVARIANT;
24 17 DO wHILE (Y>);
25 11 Y V - 1;

Z6 19 Z Z + A;
:7 E1 DND;
2c 21 F N D;
2 z 2 ASSERT (Z = A * ;
1 23 OUT SKIP EDIT (A,' * *,E = ,L)
v1 23 (F (3) ,AF (3) ,A, F(4));
32 237
13 Z4 PUT SKIP LIST ('ENTER A AND 3);
34 25 SET LIST (A,3);

36 27 Et D "*uL ;

4'O .S C 52 ASSERTFAIL is non-stanmcard PL/1
A, tI NS C2 5(.)ASSERT is non-standard 0L1
A q - 1% C 52 011b',,1T is non-stanuard PLIl

.A;*,I t CG 5Z ASSERT is non-stanoard PL/1
C v I LE Z: .7 N*SEC.

Fi gore 3-3 Output from Progran MUL

ENTER A A%;D 9

A= -1 e= 3;

ASSERTION LOOP INVARIANT FAILED AT: 19

ASSERTION LOOP-INVARIANT FAILED AT: 19

ASSLRTION LOOP_Il' ARIANT FAII;7D AT: 19

* * 3 =

ENTER A AND B

A= -3 5;

ASSERTION LOOPINVARIANT FAILED AT: 19

ASSLRTION LOOP.INVARIAT FAILED AT: 19

ASSERTION LOOP-INVARIANT FAILED AT: 19

ASSERTION LOOP-INVARIANT FAILED AT: 19

ASSERTION LOOPINVARIANT FAILED AT: 19

4.5

EX 23 Normal exit
ASSER TION SUM 'AR Y:

STMT " EAECUTIONS FAILURES

12 2
1 5 INV 39F

EXECUTION T vE 1313 ,MSLC.

3.7. tnhanceents Under stuuy

.Jditional features to PLACE3 are stilL under study; however,

since tney can Le simulated relatively easily within the current

s ...r.ti ns r .E.S

structure, the implementation has been postponed.

After evaluation these features may be added to the Language:

1) Initial values. ;X corresponds to the initial

value of X on entry to a block.

x can only be tested within an ASSERT statement. Now

the programmer can simoly declare a variable and

initiLize it in order to simulate this.

2) FOR ALL and FOR SOME. These constraints (like

in PL/CS) are also ueing considerea. They can be

simulated as function calls within expressions in ASSERT

statements.

I_.

n i'J " ; e i, , n ' r o r n i

4. usin Assrtions in Proqrags

4.1. Provide Information to a Compiler

Assertions can be used to write specifications which a

compiLer tries to prove. T nis has not been very fruitful in

general because of the difficulty of writing good theoeem provers*

However, many simple assertions and special cases can be checked

at compile time with techniques such as data flow analysis.

4.2. Program Testing

Assertions can be used in program testing to verify pre and

Post conditions and to monitor constant relationships i.e.,

invariants. Some general rules of thumb should be followed when

using assertions in program testing (some of which can be enforced

by the ccmpiler).

1) Assertions should not be referenced except by

some other component of the assertion mechanism such as

an ASSERTFAIL OG-unit.

2) Assert ions shouta be used so that they can be

deactivated without changing the meaning or results of a

program. They shoulo not be used to screen input for

v3liJity, for example.

s sin " ser tircns in ro. ra-s

Of course, these guidelines do not apply when assertions are

use for some purpose other than testing.

4.2.1. Pre and Post Conditions

One method of using Assert ions is as pre conditions or post

conditions on logical groups of statements. jhen used as a pre

condition an assertion verifies that the previous statements have

executed correctly, i.e., it is a post condition on the statements

already executea.

4.2.2. Invariant Assertions

Another usage of assertions is to monitor * retationship

among variables w hich must remain constant over a block of

statements. This can be done by an invariant assertion as in

Lines ?Q-(3 of Figure 3-2. It should be pointed out that

invariant assertions cannot in general be used to specify loop

invariants in the Hoare sense since a loop invariant often fails

to nold within the body of a loop.

4.2. 3. Test Data Evaluation

*ssertions can be used to help evaluate the thoroughness of a

test d3ta set. y placing assertions along each control path the

assertiun summary of PLACES identifies jhich paths have not been

executei.

s:' s :r i n r o r T s

For example, in Figure 4-1 the execution count of the

assertion wHILE1 is the numoer of times the while Loop is reached

during execution. The failure count is the numoer of times the

loop is skipped. So by examining the execution summary the

progrdmmer knows if the test d3ta set has exercised the Loop or

skiDped it or both.

Fi-,ure 4-1 Using Assertions in Path Testing

ASSERT WHILE1 (A < 9);
LOOP:DO 6HILE (A < 6);

END;

Of course, even if all paths of a program are executed by a

test set there can still be errors in the code [Goodenough]. The

main thrust of program testing is to expose program errors. It is

believea that the more components of a program that are exercised

the Lower the chance of undetected errors. A careful selection of

assertions can provide more information than path testing alone.

In Figure 4-Z the assertions ORI , OR2 and OR3 indicate the

comoination of conditions leading to execution of the THEN path of

IFI. IFI is an example of monitoring a disjunction of two

expressions. An example of monitoring a conjunction of two

expressions is presentea in IF2.

.I

Fiqyure 4-2 monitoring Path Selection

DECLARE GOTHERE e1T INIT V1lB);
:F1:IF (A > b OR C < D) THEN DO;

ASSERT OR1 (A > 9 & C < D);

ASSERT 0R2 (A > B);
A 3S E PT 0 R3 (C <

ELSE DO;
ASSERT (GOT-HERE);

E D
I F 2F (A > B 6 C < D0) T HEN DO;

ASSERT (GOT HE;E);

ELSE DO;
ASSERT (NOT (A > o OR C < 0));

ASSERT (NOT (A > 0));

ASSERT (NOT (C < D));

:%'D;

4.3. Except ions Viewed as Assertions

.e have oeen viewing assertion failures as one out of several

cLasses of exceptional conditions; usually they are signifing an

incorect program. However, t h is is in f act oackwards,. ot he r

exceptions are in reaLi ty assertion f ai Lures. Any Language has

certain Jata typ~e constraints (e.g. division is with a non-zero

divisor), and violating those constraints raises an excection. fte

ng s tr t i rs jfnl r o -:r a T.t

believe tnat this is a more reasonabte viewpoint. Consider, for

exaikple, the statement I = J + K. when the programmer writes such

a statement she (or at Least tne compiler) has in mind the

assertion:

MIN-INTEGER < (J + K) AND (J + K) < MAX INTEGER

where mININTESER and MAXINTESER are the smallest and largest

integers representable within the implenentation. If this implied

assertion fails an overflow exception is raised. This sort of

imolied assertion has been extended as the legality assertion of

Euclid.

.ith this view we have more flexibility in thinking about,

designing and using an assertion mechanism. oe can have

assertions check for boundary conditions and process these special

cases elsewhere in an exception handler. Our code is not

cluttered by the details of handling special cases, as the

following section demonstrates.

4.4. Data Type Specifications

in an earlier paper [Zelkowitz b], an extension to PLUM has

been Jescribed which implements abstract data types called

EVIRO4MENT variables, a form of pointer variable implementation

with protection against invalid usages. T
he model that was

imolemented has the following structure. For a data type STACK

with operations PUSH and POP, the source code implementing the

arst rction would be:

L nin, s r tions in ror ,ns

STACK:A3STkACTION;

DECLARE 1 STACK,

% STORAGE (100), 1* STACK IS AN ARRAY 'I
2 CURRENT PTR INIT (0),
2 SIZE INIT (100);

PUSH:FUNCTION (XY); /* PUSH Y ONTO X *1
DECLARE X ENV(STACK);
DECLARE Y;

END PUSH;
POP:FUNCTION (X); /* POP X AND RETURN TOP VALUE -/

END POP;
END STACK;

A user of a stack wouLu code:

DECLAPE X ENV (STACK);

,CALL PUSH (XI);

I = POP(X);

and would only have access to the data type name STACK and the

operations PUSH and POP.

Assertions fill the roLe of specifications for this model.

For example, the PUSH operation could have the syntax:

PUSH:FUNCTION (X,Y);

ASSERT PUSH-FAIL (X.CURRENTPTR < X.SIZE);

END PUSH;

Thus the implementation need not le concerned with improper calls

on PUSH since the assertion ensures (either through a proof or a

run-t i-e check) that the condition cannot arise. The full

imclementation of a STACK can then be coded as:

STACK: AB STR ACTION;
ON UNIT :PROCEDURE;

*HE% PUSH FAIL BEGIN . * * END;

wHE'i POP FAIL BEGIN . . . END;

n -s s er t i z;-, i n ro - rans

END ONUNIT;
&* .

PUSH:FUNCTION CXY);
ON ASSERTFAIL CALL ON UNIT;
ASSERT PUSH FAIL <expression>;

END PUSH;
END STACK;

One implementation detail under consideration is to

automatically execute the statement:

ON ASSERTFAIL CALL ON UNIT;

on entry to the function, thus nave exceptions handled

automatically. This Leads to 3 practical system that has many of

the same characteristics as ALPHARD [4uLf] in a practical system.

The ON statement in procedure PUSH can automatically oe generated

if there is an exception btock at the head of the proceoure. These

ideas are now under development.

"sert i tn cr ris.1 s in ro r n n ini Lan juages

k. f trtE? i

rADAJ Cii Honeywell Liull, "Preliminary Ada Weference Manual",
SIGPLAN NOTICES, vol. 14, no. 5, June 1979.

EAllen] Allen L. Ambler, Donald I. Good and Withelm, F. Burger,
"Report on the Language Gyosy", ICSCA-CMP-1, Institute for
Computing Science and Computer Applications, The University of
Texas at Austin, August 1976.

L alLJ J. E. 5all, J. R. Low and G. J. williams, "Preliminary ZENO
Language Description", SIGPLAN NOTICES, vol. 14, no* 9, p. 17-S,
Septemoer 1979.

(3asili] Victor R, 6asiLi and Robert E. Noonan, "A Comparison of
the Axiomatic and Functional Models, of Structured Programming",
University of YaryLand Computer Science Technical Report TR-630,
FeL'ru,&ry I17?.

[Conway3 Richard Conway, A Primer on Dijiglined Progr i__na,
4inthrop Publishers, 1978.

[Goodenough] John 9. Goodenough and Susan L. Gerhart, "Toward a
Theory of Test Data Selection", IEEE Transactions on Software
Engineering, vol. SE-i, no. 2, p. 156-173, June 1975.

[Hansen] G. J. Hansen, G. A. Shoults and J. D. Coinmeat,
"Construction of a Transportaole, Multi-Pass Compiler, for
Extenaed Pascal", Proceedinjs of the SIGPLAN Symposium on Compiler
Constriction, SIGPLAN NOTICES vol. 14, no. 8, p. 117-126, August
1979 0

[,oare I C. A. R, o oare, "An Axiomatic aasis for Computer
Projraiiming", CACM, vol. 16 no. 10, p. 576-583, October 1969.

[Popek] G. J. Popek, J. J. Horninit B. 4. Lampson, J. Go "itcheIL
and R. L. Lonoon, "%.otes on the Design of Euclid", Proceedings of
an AC Conference on Language Design for Reliaole Software,
SIGPLAN NOTICES vol. 12, no. 3, p. 11-13, march 1977.

L.uf.4 a. A. aulf, R. L. London and ". Shaw, "An Introduction to
the Construction and Verific3tion of ALPHAPD Programs", IEEE
Transactions on Software Engineering, voL. 2, no. 4, p. 253-265,
1 1-7t

[Zelkooitz a] varvin V. Zetkoitz, "PLACeS: Programmiing Language
an' Construct rvaluation Sstem", Seventeenth Airiua'. Technical

:.s rt j n k.c r-n is s i n r,-. ra i n q L 3n U 13e S

Symoosium, National -ureau of Standards, Gaithersburg Vd. June
1 "i7:

CZeLkowitz b] Marvin V. Zelkowitz aria Howard J. Larsent
"ImoLementation of a CaoabiLity Based Data Abstraction", IEEE
Transactions on Software Engineering, vol. 4, no. p. 56-64,

January IQ78.

I.

1i

II

